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The reflection of asymmetric shock waves in steady flows is studied both theoret-
ically and experimentally. While the analytical model was two-dimensional, three-
dimensional edge effects influenced the experiments. In addition to regular and Mach
reflection wave configurations, an inverse-Mach reflection wave configuration, which
has been observed so far only in unsteady flows (e.g. shock wave reflection over con-
cave surfaces or over double wedges) has been recorded. A hysteresis phenomenon
similar to the one that exists in the reflection of symmetric shock waves has been
found to also exist in the reflection of asymmetric shock waves. The domains and
transition boundaries of the various types of overall reflection wave configurations
are analytically predicted.

1. Introduction
Generally, depending on whether the flow field is steady or unsteady, the shock wave

reflection phenomenon can be divided into two categories: stationary (steady) and
non-stationary reflections. In the present study only steady reflections are considered.

In steady shock wave reflections, most research works (e.g. von Neumann 1945;
Henderson & Lozzi 1975, 1979; Hornung, Oertel & Sandeman 1979; Hornung &
Robinson 1982; Chpoun et al. 1995; Vuillon, Zeitoun & Ben-Dor 1995; Ivanov,
Gimelshein & Beilich 1995; Li & Ben-Dor 1997; Skews 1997) have dealt with the
reflection of symmetric shock waves. The state-of-the-art of these studies is as follows:
Two types of wave configurations, namely regular reflection (RR) and Mach reflection
(MR) have been found to exist. There are two extreme criteria, namely the detachment
criterion and the von Neumann criterion, for the transition between these two types of
reflections. These two criteria bound a domain inside which both the RR and the MR
wave configurations are theoretically possible. For this reason the domain is referred to
as the dual solution domain. Both the RR and the MR wave configurations are theoret-
ically stable in the dual-solution domain (Li & Ben-Dor 1996). A two-dimensional hys-
teresis process in the transition can exist in the dual solution domain (Hornung et al.
1979). The above-mentioned two-dimensional hysteresis process has been confirmed,
so far, only numerically (Ivanov et al. 1995). Three-dimensional edge effects contam-
inated all the experimental studies in which a hysteresis process in the RR→MR→
RR transition was recorded (Skews 1998; Ivanov et al. 1998a,b). Consequently, the
hypothesized two-dimensional hysteresis has not yet been confirmed experimentally.
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Figure 1. Schematic illustration of two general overall wave configurations which can be obtained
from the reflection of asymmetric shock waves in steady flows and definition of the relevant
parameters. (a) An overall regular reflection (RR), and (b) an overall Mach reflection (MR).

In most realistic supersonic flow situations, e.g. intake flows, nozzle flows, external
flows, etc., interactions of asymmetric rather than symmetric shock waves are more
likely to occur. For this reason Chpoun & Lengrand (1997) initiated an experimental
study on the reflection of asymmetric shock waves. Their study revealed that, similarly
to the reflection of symmetric shock waves, a hysteresis in the RR → MR → RR
transition exists also in the reflection of asymmetric shock waves.

The main purpose of the present study was to provide a detailed analysis of the
two-dimensional reflection of asymmetric shock waves in steady flows. Owing to the
fact that some new features, which were missed by Chpoun & Lengrand’s (1997)
experimental study, were discovered in the course of the present analytical study,
it was decided to conduct a complementary experimental investigation, in order to
verify these new features.

Similarly to the interaction of symmetric shock waves in steady flows, the interaction
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of asymmetric shock waves leads to two types of overall wave configurations, namely,
an overall regular reflection (RR) and an overall Mach reflection (MR). These
two overall wave configurations are shown, schematically, in figures 1(a) and 1(b),
respectively. An overall RR wave configuration consists of two incident shock waves
(i1 and i2), two reflected shock waves (r1 and r2), and one slipstream (s). These five
discontinuities meet at a single point (R). The slipstream (s) results from the flow
streamlines passing through unequal shock wave structures, i.e. i1, r1 and i2, r2. The
flow deflection angles are θ1, θ2, θ3 and θ4 through i1, i2, r1 and r2, respectively. The
boundary condition for an overall RR is

θ1 − θ3 = θ2 − θ4 = δ. (1)

When the reflection is symmetric θ1 = θ2 and δ = 0.
In the overall MR wave configuration (figure 1b), in addition to the incident and

reflected shock waves (i1, i2, r1, r2) a Mach stem (m) appears. It bridges two triple
points (T1 and T2) and is complemented by two slipstreams (s1 and s2). The boundary
conditions for an overall MR are

θ1 − θ3 = δ1 (2)

and

θ2 − θ4 = δ2. (3)

When the reflection is symmetric θ1 = θ2 and δ1 = δ2.
Most of the interest in the recent studies of shock wave reflections has concentrated

on the transition between the RR and the MR wave configurations. The classic two-
and three-shock theories of von Neumann (1963) which have been found to accurately
predict the RR↔MR transition criterion in the reflection of symmetric shock waves,
will be employed also in the present study, in order to investigate the RR ↔ MR
transition in the reflection of asymmetric shock waves. Since the boundary conditions
for the overall RR and the overall MR wave configurations in the reflection of
asymmetric shock waves are different from those in the reflection of symmetric shock
waves, new features can be expected to occur in the reflection of asymmetric shock
waves.

2. Present study
2.1. Shock polar analysis

The use of pressure-deflection shock polars is very convenient for analysing phe-
nomena involving shock wave reflections (see Ben-Dor 1991, Chapter 1.4). As shown
there, the Mach reflection wave configuration can be sub-divided into three categories
depending on the location of the intersection of the R-polar with the I-polar: the
three possibilities are shown in figure 2. An intersection along the right-hand branch
of the I-polar (e.g. point a in figure 2) results in a direct-Mach reflection (DiMR). An
intersection along the left-hand branch of the I-polar (e.g. point c in figure 2) results
in an inverse-Mach reflection (InMR). An intersection at the point where these two
branches meet, i.e. the intersection point of the I-polar with the p-axis (e.g. point b
in figure 2), results in a stationary-Mach reflection (StMR). While in a DiMR the
slipstream and the reflection plane (e.g. the plane of symmetry in the case of the
reflection of symmetric shock waves) form a converging stream tube, in an InMR
they form a diverging stream tube. In the intermediate case of an StMR the slipstream
is parallel to the reflecting plane.
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Figure 2. General pressure-deflection polar combinations illustrating theoretical solutions of three
different types of Mach reflections: a direct-Mach reflection (DiMR) at point a, a stationary-Mach
reflection (StMR) at point b, and an inverse-Mach reflection (InMR) at point c.

The pressure and the deflection angle across an oblique shock wave are related as
follows (see Han & Yin 1993, p. 235):

θ = ±f(γ,M, ξ) (4)

where

f(γ,M, ξ) = arctan

{
(ξ − 1)2[2γ(M2 − 1)− (γ + 1) (ξ − 1)]

[γM2 − (ξ − 1)]2[2γ + (γ + 1) (ξ − 1)]

}1/2

. (5)

Here γ,M, ξ and θ are the specific heat capacities ratio, the flow Mach number ahead
of the shock wave, the pressure ratio across the shock wave and the flow deflection
angle, respectively. The positive and negative signs in equation (4) correspond to
counter-clockwise and the clockwise deflection angles, respectively.

The tangent of the shock polar in the (ξ, θ)-plane can be obtained by differentiating
equation (4) with respect to ξ, i.e.

dθ

dξ
= ±g(γ,M, ξ) (6)

where

g(γ,M, ξ) =
4γ(M2 − 1)− (γ + 1) (4−M2) (ξ − 1)− (γ + 1) (ξ − 1)2

[2γ(M2 − 1)− (γ + 1) (ξ − 1)]1/2[2γ + (γ + 1) (ξ − 1)]1/2

×{2γM2 − [4− (γ + 1)M2](ξ − 1)− 2(ξ − 1)2
}−1

. (7)

Equations (6) and (7) will be used, in the subsequent discussion, to define the domains
of the various wave configurations associated with the reflection of asymmetric shock
waves.

In the following the theoretically possible wave configurations which can result
from the reflection of asymmetric shock waves will be analysed with the aid of shock
polars.
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Figure 3. for caption see facing page.

Figures 3(a)–3(g) illustrate seven shock polar combinations. For all the combi-
nations the flow Mach number is M0 = 4.96 and hence the I-polar is identical.
Furthermore, since the angle of one reflecting wedge is kept constant at θ1 = 25◦,
all the R1-polars are also identical. Note that the intersection of the I- and the fixed
R1-polars predicts a direct-Mach reflection (DiMR) as shown in figures 3(a)–3(g).

The shock polar combination of figure 3(a) is for M0 = 4.96, θ1 = 25◦ and
θ2 = 35◦. As can be seen the intersection of the R2- and the I-polars results in a
DiMR. Consequently, the shock polar combination shown in figure 3(a) represents the
solution of an overall Mach reflection wave configuration that consists of two direct-
Mach reflections. A schematic illustration of this overall MR wave configuration is
shown in figure 4(a). Note that since the overall Mach reflection wave configuration
consists of two direct-Mach reflections their slipstreams form a converging stream
tube. Hence the subsonic flow behind the Mach stem accelerates, similarly to the
situation obtained in the reflection of symmetric shock waves.

When θ2 is decreased to 29.97◦ the shock polar combination shown in figure 3(b)
is obtained. Here the R1- and R2-polars are tangent to each other. As a result, in
addition to an overall Mach reflection wave configuration, similar to that shown in
figure 4(a) which consists of two direct-Mach reflections (DiMR1 and DiMR2), here an
overall regular reflection wave configuration at the point where the R1- and R2-polars
are tangent to each other is also theoretically possible. The shock polar combination
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Figure 3. Pressure-deflection polar combinations illustrating various theoretically possible solutions
in the reflection of asymmetric shock waves for a fixed flow Mach number M0 = 4.96 and one fixed
wedge angle θ1 = 25◦. (a) An overall MR that consists of two direct-Mach reflections (DiMR) for
θ2 = 35◦. (b) An overall RR or an overall MR that consists of two DiMR for θ2 = 29.97◦. Note
that this situation is analogous to the detachment condition. (c) An overall RR or an overall MR
that consists of two DiMR for θ2 = 28.5◦. (d) An overall RR or an overall MR that consists of
one DiMR and one stationary-Mach reflection (StMR) for θ2 = 20.87◦. (e) An overall RR or an
overall MR that consists of one DiMR and one inverse-Mach reflection (InMR) for θ2 = 19◦. ( f )
An overall RR or an overall MR that consists of one DiMR and one InMR for θ2 = 16.89◦. Note
that this situation is analogous to the von Neumann condition. (g) An overall RR or an overall
MR that consists of one DiMR and one InMR for θ2 = 12◦. Note that (b), (c), (d), (e) and ( f )
correspond to the dual-solution domain.

shown in figure 3(b) is analogous to the detachment condition in the reflection over a
single wedge or the reflection of symmetric shock waves (see Ben-Dor 1991).

When θ2 is further decreased to 28.5◦ the shock polar combination shown in
figure 3(c) is reached. Here again both an overall MR wave configuration which
consists of two direct-Mach reflections (DiMR1 and DiMR2) and an overall RR wave
configuration are theoretically possible.

Upon a further decrease in θ2, to 20.87◦, the situation shown in figure 3(d) is
obtained. Similarly to the cases shown in figures 3(b) and 3(c), the overall reflec-
tion here again can be either an overall MR or an overall RR. However, unlike
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Figure 4. Schematic illustration of the wave configurations of various overall Mach reflections
consisting of: (a) two DiMR, (b) one DiMR and one StMR, (c) one DiMR and one InMR with a
converging slipstream tube, (d) one DiMR and one InMR with a diverging slipstream tube, (e) two
InMR. Note that the wave configurations shown in (d) and (e) are not physical.

those cases, where the overall MR wave configuration consisted of two direct-Mach
reflections (DiMR1 and DiMR2), here the overall MR wave configuration consists
of a direct-Mach reflection (DiMR1) and a stationary-Mach reflection (StMR2). A
schematic illustration of the overall wave configuration corresponding to this case is
shown in figure 4(b). Note that the slipstream of the stationary-Mach reflection wave
configuration is parallel to the oncoming flow. Similarly to the wave configuration
shown in figure 4(a) the two slipstreams in figure 4(b) also form a converging stream
tube.

A further decrease in θ2, to 19◦, results in the situation shown in figure 3(e). Again
two solutions are theoretically possible: an overall RR or an overall MR. However,
unlike the previously described cases, here the overall MR wave configuration consists
of a direct-Mach reflection (DiMR1) and an inverse-Mach reflection (InMR2). A
schematic drawing of the overall wave configuration corresponding to this case is
shown in figure 4(c). Note the orientation of the slipstream of the InMR, which is
shown in the upper part of figure 4(c). It should be noted here again that the stream
tube formed by the two slipstreams is converging.

An interesting shock polar combination is obtained when θ2 is further decreased
and reaches the value 16.89◦. At this condition the three polars, namely the I-, R1-
and R2-polars meet at a single point as shown in figure 3( f ). This combination is, in
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Figure 5. Pressure-deflection polar combinations illustrating an overall MR consisting of one
DiMR and one InMR for M0 = 4.96, θ1 = 35◦ and θ2 = 17◦.

fact, analogous to the von Neumann condition in the reflection over a single wedge or
the reflection of symmetric shock waves (see Ben-Dor 1991).

Based on the foregoing discussion, the shock polar combinations shown in fig-
ures 3(b) and 3( f ) are the two extreme situations between which both an overall RR
and an overall MR wave configurations are theoretically possible. Hence, they are, in
fact, the upper (θ2 = 29.97◦, see figure 3b) and the lower (θ2 = 16.89◦, see figure 3 f )
bounds of the dual-solution domain for M0 = 4.96 and θ1 = 25◦.

When θ2 is further reduced, e.g. to 12◦, the resulting shock polar combination,
which is shown in figure 3(g), suggests an overall RR wave configuration at the point
where the R1- and R2- polars intersect. The other theoretical solution suggested by
this shock polar combination, i.e. an overall MR wave configuration, which consists
of a DiMR1 and an InMR2, is not physical since it implies a wave configuration in
which the slipstreams of the two MR wave configurations form a diverging stream
tube (see figure 4d). Such a stream tube cannot be negotiated by the subsonic flow
behind the Mach stem.

2.2. Special types of shock wave reflections

Based on the foregoing shock polar analysis, overall MR wave configurations consist-
ing of one DiMR and one InMR are theoretically possible for shock polar combina-
tions such as the one shown in figure 3(e) which, as mentioned earlier, corresponds to
the dual-solution domain (i.e. an overall RR wave configuration is also possible for
this shock polar combination). Unlike the combination shown in figure 3(e), the shock
polar combination for M0 = 4.96, θ1 = 35◦ and θ2 = 17◦ which is shown in figure 5,
represents a solution in which only an overall MR wave configuration, consisting
of one DiMR and one InMR is theoretically possible. A schematic illustration of
this overall reflection is shown in figure 4(c). It should be mentioned here that in
the reflection of two symmetric shock waves an InMR is not physical because the
subsonic flow behind the Mach stem cannot negotiate a diverging steam tube.

Another interesting situation is obtained for conditions slightly different from those
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Figure 6. (a) Pressure-deflection polar combinations illustrating an overall RR that consists of one
weak RR and one strong RR, and an overall MR that consists of one DiMR and one InMR for
M0 = 4.96, θ1 = 35◦ and θ2 = 16.08◦. (b) Detailed drawing of the area of intersection in which the
resulting overall RR consists of one weak RR and one strong RR.

shown in figure 5, i.e. M0 = 4.96, θ1 = 35◦ and θ2 = 16.08◦, as shown in the shock
polar combination in figure 6(a). Now the R1- and R2-polars are tangent and hence
an overall RR wave configuration is theoretically possible at their point of tangency.
A close inspection of figure 6(a) indicates that the point of tangency is on the strong
shock portion of the R1-polar and on the weak-shock portion of the R2-polar. Hence,
the overall RR wave configuration there consists of one strong RR and one weak
RR.

A detailed enlargement of the vicinity of the point of tangency of the R1- and
R2-polars is shown in figure 6(b) where two R1- and R2-polar combinations, i.e. R1

and RD
2 and R1 and RE

2 , are shown. While the R1- and the RE
2 -polars are tangent

the RD
2 -polar intersects the R1-polar at its point of maximum deflection (point D).

Hence any R2-polar between the RD
2 - and the RE

2 -polars would intersect the R1-polar
along its strong-shock portion (shown in figure 6b as a dashed line), resulting in an
overall RR wave configuration with a strong RR on the R1-polar and a weak RR
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on the R2-polar. It is important to note that the range in which such an overall
RR wave configuration is possible is very narrow. For example, for M0 = 4.96 and
θ1 = 35◦, the R1- and RD

2 -polar combination is obtained with θ2 = 15.72◦ and the
R1- and RE

2 -polar combination is obtained with θ2 = 16.08◦. Consequently, recording
this special overall RR wave configuration experimentally is not an easy task.

It should be noted that owing to the violation of the principle of minimum entropy
production, a strong RR cannot be obtained in the reflection of symmetric shock
waves, in steady flows, unless special pressure boundary conditions are imposed on
the flow field downstream of the reflection point (for details see Salas & Morgan
1983). However, when asymmetric shock waves reflect, as is the case in the present
study, the complementary weak RR is capable of providing, behind its reflected shock
wave, the high pressure which is required to support a strong RR. For example,
consider figure 1(a) and assume that the upper RR is weak and the lower RR is
strong. Based on the above explanation, it is possible that the weak RR will result,
in region 3 behind its reflected shock wave, in a pressure which will be sufficient to
provide the high pressure required in region 4 to support a strong RR. Note that the
pressures across the slipstream s are equal. i.e. p2 = p3.

Finally, it should also be noted here that because an overall MR wave configuration
having diverging slipstreams cannot exist, an overall MR wave configuration which
consists of two inverse-Mach reflections, such as the one shown schematically in
figure 4(e) is not physical.

2.3. Transition criterion

Based on the foregoing discussion the ‘detachment’ condition (i.e. the condition at
which the R1- and R2-polars are tangent, see figure 3b) can be expressed mathemati-
cally as

f(γ,M1, p/p1) + f(γ,M2, p/p2) + θ1 − θ2 = 0, (8)

g(γ,M1, p/p1) + g(γ,M2, p/p2) = 0. (9)

Similarly, the mathematical expression for the von Neumann condition (i.e. the
condition at which the I-, R1- and R2-polars meet at the same point, see figure 3 f )
is given by

f(γ,M0, p/p0) + f(γ,M1, p/p1) + θ1 = 0, (10)

f(γ,M0, p/p0)− f(γ,M2, p/p2) + θ2 = 0, (11)

where, based on the oblique shock wave relations, p1, p2, M1, M2 are given by

pj =
p0

γ + 1
[2M2

0 sin2 φj − (γ − 1)], (12)

Mj =
{1 + (γ − 1)2M2

0 sin2 φj + [ 1
4
(γ + 1)2 − γ sin2 φj]M

4
0 sin2 φj}1/2[

γM2
0 sin2 φj − γ − 1

2

]1/2 [
γ − 1

2
M2

0 sin2 φj + 1

]1/2
, (13)

and the relation between φj and θj is given by

tan θj − 2 cotφj(M
2
0 sin2 φj − 1)

M2
0 (γ + cos 2φj) + 2

= 0. (14)

Here, j = 1 and 2 for the upper and the lower reflections, respectively.
The ‘detachment’ transition line given by expressions (8) and (9) and the ‘von
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Figure 7. The dual-solution domain in the (θ1, θ2)-plane for M0 = 4.96. The transition lines θE
2 and

θT
2 correspond to the shock polar combinations shown in figures 3(b) and 3( f ), respectively.

Neumann’ transition line given by expressions (10) and (11) are drawn as solid lines
in figure 7 in the (θ1, θ2)-plane for M0 = 4.96. The lines are labelled θE

2 and θT
2 ,

respectively. The earlier mentioned dual solution domain, inside which the overall
wave configuration can be either a regular reflection or a Mach reflection, extends
between these two transition lines.

The two dashed lines marked θN
1 and θN

2 indicate the ‘von Neumann’ condition for
a symmetric reflection, e.g. the shock polar combination shown in figure 3(d) where
θ2 = θN

2 is a point on the dashed line. On one side of the dashed line the Mach
reflection is direct and on the other side it is inverse.

Based on figure 7 the dual-solution domain can be divided into two parts (note
the symmetry between the wedge angles θ1 and θ2). In one part, labelled as RR or
DiMR, the overall wave configuration can be either an RR or an MR which consists
of two direct-Mach reflections, as shown in figure 4(a). In the other part, labelled
RR or InMR, the overall wave configuration can be either an RR or an MR which
consists of one direct-Mach reflection and one inverse-Mach reflection, as shown in
figure 4(c). Note that in both cases the slipstreams of the two Mach reflections, of
which the overall MR wave configuration consists, form converging stream tubes.

The domains of different types of overall wave configurations are shown in the
(M0, θ2)-plane for θ1 = 15◦, 20◦ and 25◦ in figures 8(a), 8(b) and 8(c), respectively. It
is evident from these figures that for a fixed wedge angle, θ1, different sequences of
overall wave configurations can be encountered as θ2 is changed for a fixed flow Mach
number, M0. Consider, for example, the case shown in figure 8(a) for θ1 = 15◦. The
vertical line MD

0 (θ1) indicates the lowest flow Mach number for which an attached
oblique shock wave is possible over the fixed wedge (i.e. the wedge having the angle
θ1). For the case shown in figure 8(a) one can easily calculate MD

0 (θ1) = 1.62. The line
θD

2 indicates the largest value of the angle of the other wedge for which an attached
shock wave can be obtained for any given flow Mach number, M0. The vertical line
MN

0 (θ1) indicates the flow Mach number for which the Mach reflection over the fixed
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wedge (i.e. the wedge having the angle θ1) is a stationary-Mach reflection (StMR).
(For the case shown in figure 8(a), MN

0 (θ1) = 2.18). Similarly, the line θN
2 indicates the

value of the angle of the other wedge at which an StMR is obtained for any given
flow Mach number, M0.

Based on the foregoing discussion regarding the different boundary lines in the
(M0, θ2)-plane it is clear that depending on the flow Mach number, M0, different
sequences of overall reflection wave configurations can be encountered as θ2 is
changed.

For MD
0 (θ1) < M0 < MN

0 (θ1) one obtains: a regular reflection for 0 < θ2 < θE
2 ,

an inverse-Mach reflection for θE
2 < θ2 < θN

2 , and a direct-Mach reflection for
θN

2 < θ2 < θD
2 .

For M0 > MN
0 (θ1) one gets: a regular reflection for 0 < θ2 < θT

2 , an inverse-Mach or
a regular reflection for θT

2 < θ2 < θE
2 , and an inverse-Mach reflection for θE

2 < θ2 < θD
2 .

The boundary lines described above, i.e. θD
2 , θE

2 , θT
2 , θN

2 , MD
0 (θ1) and MN

0 (θ1) also
appear in figures 8(b) and 8(c). Owing to the change in the value of the fixed angle, θ1,
the boundary lines in figures 8(b) and 8(c) are shifted with respect to their location in
figure 8(a). As a consequence, their intersections lead to a different variety of domains
of overall reflection wave configurations. The variety of the sequences of events, as θ2

is changed, is self-explanatory in view of the foregoing description of figure 8(a).

2.4. Hysteresis phenomenon

Similarly to the hysteresis phenomenon first hypothesized by Hornung et al. (1979)
in the steady reflection of symmetric shock waves, a hysteresis phenomenon can be
hypothesized in the present case of steady reflection of asymmetric shock waves.

Consider figure 7 and note that one could start with an overall MR wave configu-
ration with a value of θ2 larger than θE

2 and then decrease θ2 until the von Neumann
transition line (θT

2 ), below which an overall MR wave configuration is theoretically
impossible, will be reached. At this line the overall MR wave configuration must
change to an overall RR wave configuration. If the direction of the change in θ2 was
now reversed and θ2 increased, the overall RR wave configuration could continue to
exist until the detachment line (θE

2 ), above which an overall RR wave configuration is
theoretically impossible, was reached. At this line the overall RR wave configuration
must change to an overall MR wave configuration.

Based on figure 7, which is drawn for M0 = 4.96, it is evident that two sequences of
transition of the overall reflection wave configuration are possible during the process
of first decreasing θ2 and then increasing it back to its initial value, depending on
whether θ1 is smaller or larger than θN

1 . While for θ1 < θN
1 = 20.87◦ the overall

reflection wave configuration follows the following sequence of events:

InMR→ RR(at θT
2 )→ InMR(at θE

2 ),

for θ1 > θN
1 = 20.87◦ the overall reflection wave configuration follows the following

sequence of events:

DiMR→ InMR(at θN
2 )→ RR(at θT

2 )→ DiMR(at θE
2 )

2.5. The experimental study

As indicated in the Introduction, Chpoun & Lengrand’s (1997) experimental investi-
gation of the reflection of asymmetric shock waves triggered the present study, the
main purpose of which was to provide a detailed analysis of the two-dimensional
reflection of asymmetric shock waves in steady flows. Furthermore, as some new
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features which were missed by Chpoun & Lengrand (1997) were revealed in the
course of the present analytical study, it was decided to conduct a complementary
experimental investigation, in order to verify these new features.

Chpoun & Lengrand’s (1997) experimental investigation was conducted in the same
facility that was used by Chpoun et al. (1995) for their experimental investigation
of the reflection of steady symmetric shock waves. The inlet aspect ratio in Chpoun
& Lengrand’s (1997) experimental set-up was 0.7. Since Fomin et al. (1996) and
Skews (1997) showed that the experimental results of Chpoun et al. (1995) were
contaminated by three-dimensional edge effects and hence could not be considered
as purely two-dimensional an attempt to eliminate such effects was made.

Based on Skews’ (1997) recent theoretical study an inlet aspect ratio of at least
0.75 is adequate to avoid three-dimensional edge effects from intruding to the flow
field in the area of interest, for M0 = 4.96. A modified recent analytical study by
Skews (1998) showed that even an aspect ratio of 1 would not be suffieient to
eliminate three-dimensional edge effects. Fomin et al. (1996) showed experimentally
that three-dimensional influences extend beyond this theoretical limit. Based on their
experiments an inlet aspect ratio of at least 1.25 is needed to avoid such effects†.
Consequently, in order to improve the reflecting plates, which were used as shock
generators and thereby reduce possible three-dimensional effects, new plates with an
inlet aspect ratio 1.4 times larger than that used by Chpoun & Lengrand (1997), were
used in the course of the present experimental investigation. While the width of the
plates used by Chpoun & Lengrand (1997) was 50 mm the width of the new plates
was 70 mm. The distance between the two leading edges of the two reflecting plates
was kept constant at about 71 mm. Therefore the inlet aspect ratio for the present
experiments was about 1. This value is well beyond the above-mentioned theoretical
requirement of at least 0.75 but still below the experimentally based recommendation
of at least 1.25.

Consequently, the experimental results, which are reported in the following, are
probably contaminated with three-dimensional edge effects and hence should not
be considered as purely two-dimensional. Therefore, although they cannot be, and
were not, used for verifying the findings of the two-dimensional analysis, e.g. the
hypothesized two-dimensional hysteresis, since they do illustrate the results of an
actual hysteresis in a two/three-dimensional steady supersonic flow they will be
compared with the analytical results of a purely two-dimensional flow.

2.5.1. The experimental set-up

The experiments were conducted on the SH2 wind tunnel of CNRS at Meudon,
France. This is an open jet facility that produces a uniform airflow at Mach number
4.96 in a continuous manner. The nozzle exit diameter is 127 mm. The stagnation
temperature and pressure were 453 K and 8.5 bars, respectively, leading to a Reynolds
number of 1.27× 107 m−1.

A colour schlieren photography system connected simultaneously to a video

† It should be noted here, that while Fomin et al. (1996) used a closed wind tunnel, the present
experiments were conducted in an open jet facility. Hence, it is important to establish what effect
this different boundary condition has on the size of the minimum inlet aspect ratio required for the
reflection process to be free of three-dimensional edge effects. It is also important to note that while
Fomin et al. (1996) and Skews’ (1997) studies dealt with the reflection of symmetric shock waves,
the present study deals with the reflection of asymmetric shock waves, in which special pressure
conditions can be imposed on the flow field downstream of the reflection point of an overall RR
or the Mach stem of an overall MR. For these reasons the question of by how much the present
experimental results are influenced by three-dimensional edge effects needs further investigation.
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recorder and a digital picture acquisition system were employed to record the entire
sequence of each experiment.

The two incident shock waves were generated using two flat plates, which were
40 mm long. They were mounted on a special rotation mechanism, connected to
electric motors, by which they could be placed at any predetermined angle or could be
continuously rotated around the axes aligned with their leading edges. As mentioned
earlier the inlet aspect ratio was about 1. The wedge angles were measured using two
digital transducers with an accuracy better than 0.3◦. The inlet flow rate was kept
constant during the course of each experiment.

2.5.2. Experimental results

The existence of a hysteresis process was checked experimentally using the following
procedure. The upper wedge angle was kept constant at θ1. The lower wedge angle
θ2 was decreased continuously from an initial value larger than θE

2 (i.e. at which,
based on a two-dimensional analysis, only an overall MR is theoretically possible)
to a value smaller than θT

2 (i.e. at which, based on a two-dimensional analysis, only
an overall RR is theoretically possible). Then the direction of the change in θ2 was
reversed and the lower wedge angle was increased until it reached again its initial
value.

Five different values of θ1, namely 18◦, 22◦, 25◦, 28◦ and 30◦, were selected. For each
of these values of θ1 the values of θ2 at which the actual MR→RR and RR→MR
transitions took place were recorded. The results are shown in figure 9. The triangles
and the squares represent the points at which the MR→RR and the RR→MR
transitions were recorded, respectively. A clear hysteresis is evident in the RR⇔MR
transition. The part of figure 7 extending from θ1 = 17◦ to 33◦ and θ2 = 11◦
to 37◦ has also been added to figure 9. The agreement between the analytically
predicted transition lines, θE

2 and θT
2 , and the experimental results is surprisingly
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(a) (b)

Figure 10. Colour schlieren photographs showing (a) an overall MR and (b) an overall RR for the
same conditions. M0 = 4.96, θ1 = 28◦ and θ2 = 24◦.

(a)

(b)

Figure 11. An overall MR that consists of one DiMR and one InMR for M0 = 4.96, θ2 = 28◦ and
θ2 = 18◦. (a) A colour schlieren photograph and (b) a line drawing.

good in view of the fact that the analytical transition lines were calculated using a
two-dimensional model and the experimental results are most likely contaminated
with three-dimensional edge effects. The good agreement could imply either that
such effects are not very dominant in our experimental set-up, and hence that the
present experiments could in practice be treated as two-dimensional or that the actual
MR→RR and RR→MR transition angles in three-dimensional flows are close to
those of two-dimensional flows. Whether these two possibilities are general or limited
to the flow Mach number at which the above-described comparison was made, i.e.
M0 = 4.96, is yet to be investigated.
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θ1 ω1 δ1 θ2 ω2 δ2

(deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

Experimental 28 11.5± 0.3 11± 0.3 18 19± 0.3 −5± 0.3
Analytical 28 12.86 12.03 18 21.99 −4.98

Table 1. Comparison of the experimental and the calculated results for an overall MR that consists
of a DiMR and an InMR for M0 = 4.96, θ1 = 28◦ and θ2 = 18◦. Here ω is the angle of inclination
of the reflected shock wave with respect to the horizontal direction, i.e. ω1 = φ3 − θ3 − δ1 and
ω2 = φ4 − θ4 − δ2.

Typical colour schlieren photographs showing an overall MR and an overall RR
wave configuration for identical values of M0 = 4.96, θ1 = 28◦ and θ2 = 24◦ are
shown in figures 10(a) and 10(b), respectively. These two schlieren photographs are
clear evidence that different overall wave configurations can be obtained for identical
flow conditions when two asymmetric shock waves interact. The transverse waves
(three-dimensional edge effects) emanating from the side edges of the reflecting plates
are also seen in figures 10(a) and 10(b).

It should also be noted that based on the present analytical findings (see figure 9) the
sequence of events for some values of θ1, e.g. for θ1 = 28◦, encounters an overall MR
wave configuration which consists of an inverse-Mach reflection wave configuration
(InMR) for values of θT

2 < θ2 < θN
2 .

An example of such an overall MR wave configuration is shown in figure 11(a) for
θ1 = 28◦, θ2 = 18◦ and M0 = 4.96. (We emphasize again that three-dimensional edge
effects contaiminte the experimental results. Consequently, they cannot be and, in
fact, are not used here to verify the analytical model. They are merely presented here
because of the earlier finding that they agree well with the two-dimensional theory.)
For the reader’s convenience a line drawing of the colour schlieren photograph shown
in figure 11(a) is shown in figure 11(b) (for reasons of convenience the Mach stem
length has been increased in figure 11b). Based on the present two-dimensional theory,
the overall wave configuration for such a combination of parameters is either an
overall RR or an overall MR consisting of an InMR and a DiMR. In spite of the fact
that the experimental evidence shown in figure 11(a) is not purely two-dimensional,
it is clear that the overall MR wave configuration shown in it consists of a DiMR
and an InMR. To the best of the authors’ knowledge until the present experimental
study, an inverse-Mach reflection has never been reported to exist in steady flows for
situations in which the flow field is free of pressure boundary conditions.

Comparisons between the experimental measurements from figure 11(a) and the
analytical calculations based on the three-shock theory are shown in table 1. As can
be seen the agreement is again surprisingly good. This fact could again imply that
the three-dimensional edge effects are not too dominant in our experimental set-up.
Whether this fact is general or limited to the flow Mach number at which the above
comparison has been made, i.e. M0 = 4.96, is yet to be investigated.

3. Conclusions
The reflection of asymmetric shock waves in steady flows has been investigated

both analytically and experimentally. While the analysis was two-dimensional the
experiments were not purely two-dimensional since they were contaminated with
three-dimensional edge effects.
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The analytical investigation was carried out using shock polars. Two extreme shock
polar combinations, analogous to the well-known detachment and von Neumann
conditions were identified. Their existence led to the identification of a dual-solution
domain in which the overall wave configuration could be either a regular reflection
(RR) or a Mach reflection (MR). As a result it was hypothesized that a hysteresis
could exist in the RR→MR→ RR transition process. In addition, the shock polar
analysis suggested the existence of two shock wave reflection configurations, namely
an inverse-Mach reflection and a strong regular reflection. These reflection wave
configurations do not exist in the reflection of symmetric shock waves.

The experimental results, which as mentioned earlier were contaminated by three-
dimensional edge effects, revealed a hysteresis in the RR → MR → RR transition
process. The agreement between the analytical and the experimental results concerning
the RR ⇔ MR transition angles and the wave angles of an inverse-Mach reflection
was surprisingly good in view of the fact that the analytical values were calculated
using a two-dimensional theory and the experimental results were contaminated with
three-dimensional edge effects. The good agreement could imply either that the three-
dimensional edge effects were not too dominant in our experimental set-up, and hence
that the present experiments could in practice be treated as two-dimensional or that
the actual RR ⇔ MR transition angles in three-dimensional steady flows are close
to those of two-dimensional steady flows. Whether these two possibilities are general
or limited to the flow Mach number at which the above comparisons were made, i.e.
M0 = 4.96, is yet to be investigated.
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